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I. INTRODUCTION 

 

Before the 20th century, only a few brief observations on rubber properties were 

reported; for instance those of Gough
1
 (1805) and Joule

2
 (1857), which dealt with the increase 

in temperature of rubber when stretched and are classically cited in the literature. The first 

studies that investigated the mechanical properties of rubber date from the beginning of the 

20th century. A major result was the observation of the decrease in stiffness of rubber during 
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the first mechanical cycles by Bouasse and Carrière
3
 (1903). Later, this phenomenon was 

studied more precisely by Holt
4
 (1931) and Mullins

5
 (1948) and was then referred to as "the 

Mullins effect". Other physical phenomena involved in the deformation of rubber were also 

characterized by using advances in physics and technology. For example, x-ray diffraction 

contributed to the comprehension of the kinetics of polymer chain crystallization. Today, 

rubber is still the object of vivid scientific interest and a material with "extraordinary physical 

properties".
6
 

To investigate these physical properties, several mechanical quantities have been used. 

Among them, the change in volume of stretched rubber seems to be one of the most relevant, 

in particular to analyze the change in the rubber microstructure. The first record of this 

phenomenon dates back as far as the end of the nineteenth century in the works of Joule
6
 

(1884). The author observed that the specific gravity of natural rubber decreased upon 

stretching it (about 0.15 per cent for a 100 per cent stretch). Even though these results were 

corroborated by Mallock
7
 (1889) while investigating the physical properties of vulcanized 

India-Rubber, Thomson
8
 stated (1890) that a column of rubber when stretched out suffers no 

significant change in volume and rubber may therefore be regarded as an incompressible 

elastic solid. Then, while studying the nature of the stress-strain curves for rubber containing 

different pigments in varying quantities, Schippel
9
 (1920) considered that possibly, when the 

rubber was sufficiently stretched, it might pull away from the particles of pigment along their 

axes of stress and cause vacua to be formed on either side of each particle, and a considerable 

increase in the rubber body volume might therefore be observed. Later, the discovery of the 

ability of rubber chains to crystallize under stretching or at low temperature motivated a 

number of authors to investigated more precisely the change in volume of rubbers, under 

stretching and/or under heating and cooling. 
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The aim of the present paper is to give an exhaustive view of the state of knowledge 

on volume variation and to link it to the physical phenomena observed. For this purpose, the 

results obtained experimentally are first presented in a chronological manner. Special 

attention is paid to detailing their relative contribution. Secondly, the different approaches 

adopted to modeling the isothermal volume changes in stretched rubbers are summarized. 

Finally, conclusions and perspectives close the paper. 

 

II. THE MEASUREMENT OF VOLUME VARIATION 

 

Numerous measurement methods have been used to characterize the change in volume 

of stretched rubbers. They used various technologies whose accuracy differed from one to 

another. Moreover, loading and temperature conditions are not precisely described. This 

explains why the results obtained are not easily comparable. The technology classically used 

to measure volume variation is dilatometry. In this case, the measurement of the change in 

volume of rubber is performed by enclosing samples in suitable confining liquids in 

dilatometers and observing the changes in the height of the liquid in calibrated capillary tubes 

when the rubber is stretched. Smaller capilaries give more precise values.
4,10,11

 Certain authors 

developed their own procedure to measure the volume change, which can be determined by 

calculating the change in specific gravity
9
, measuring the hydrostatic weighting

12-14
 or 

measuring the relative pressure using the Farris principle
15

. Optical measurement methods 

have also been developed recently by Le Cam and Toussaint.
16,17

 

 

III. EXPERIMENTAL RESULTS 
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As previously indicated in the introductory section, even though preliminary 

observations of the change in volume of stretched rubber were briefly reported by 

investigators at the end of the 19
th

 century
6-8

, the first quantitative studies date from the 

beginning of the 20th century. In this section, we propose to review the main results obtained 

from this period in a chronological manner. 

 

A. THE WORKS OF SCHIPPEL (1920) AND FEUCHTER (1925) 

 

The work of Schippel
9
 was the first to investigate quantitatively the change in volume 

of stretched natural rubber. Schippel investigated the volume change in stretched rubber 

containing various pigments. This study was motivated by previous experiments by the author 

on transparent vulcanized compounds containing a fair proportion of medium-sized lead shot. 

When the compound was stretched, the formation of vacua proceeded gradually until each 

lead shot had its own conical vacuum on either side in the direction of strain. To investigate 

more precisely this phenomenon, this author added pigments (here given in phr (part per cent 

of rubber) by volume) in varying quantities to the rubber matrix: barytes, i.e. barium sulfate 

(BaSO4), from 0 to 150, whiting from 0 to 150, zinc oxide from 0 to 125, china clay from 0 to 

25, red oxide from 0 to 30, lamp carbon from 0 to 75 and carbon black from 0 to 30. The tests 

were carried out until sample fracture. For each particle type, the increase in volume was 

measured every 50 per cent strain increase up to a 200 or 300 per cent strain. The final curve 

describing relative volume variation versus elongation was obtained by linking the last point 

at 200 or 300 per cent strain to the point corresponding to the sample fracture. This is 

illustrated by the diagram in Figure 1. Results obtained by Schippel showed that the higher 

the quantity of particles, the higher the volume increase and the lower the elongation before 

fracture. The maximum of change in volume was found to attain 120% for the barite particles. 
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Regarding the effect of zinc oxide, Schippel highlighted that a threshold of 40 phr in volume 

was necessary to obtain a higher increase in volume for a given elongation, and concluded 

that below this threshold, zinc oxide had no effect on volume change. The author also found 

that the mean diameter of the particles had the same effect as the quantity. Finally, Schippel 

chose the level of change in volume as a relevant measure of adhesion and classified red 

oxide, zinc oxide, lamp black and carbon black as particles that exhibited a strong adhesion 

with the rubber matrix, contrary to barites and whiting. In Figure 1, this latter observation can 

be illustrated by angle α, which is large for barites and whiting, and small for the other 

particles. The fact that the volume can not exceed a certain value, modeled by a value of angle 

α close to π/2 rad, seems to be a criterion of high adhesion between particles and the rubber 

matrix for Schippel. 

Later, a brief study by Feuchter
18

 reported some results that differed from those of 

Schippel by showing that the volume of natural rubber decreased with elongation. The author 

explained this result by the formation of an anisotropic system in stretched natural rubber, 

namely fibering or crystallization. This result, which seems to be contradictory to that of 

Schippel, is the first that envisaged that volume might decrease through the contribution of 

phenomena that tend to reorganize the polymer chains. Moreover, compared to the previous 

work of Schippel, the fact that no increase 

in volume of rubber was observed can be explained by the fact that Feuchter studied an 

unfilled natural rubber. Thus, the decrease in volume of rubber due to crystallization is a first-

order phenomenon compared to the cavitation phenomenon. In Schippel's study, the presence 

of fillers was favorable and amplified the cavitation. Finally, the decrease in the volume of 

rubber was observed by Feuchter beyond a certain elongation threshold in the range of 

elongation for which Schippel had not measured the volume. Even though a second-order 

phenomenon had taken place, Schippel did therefore not detect it. 
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At this stage of the present literature survey, the volume variation in rubber seems to 

be affected by two major phenomena: nucleation and the growth of vacua around the 

particles, which leads to an increase in volume, and the reorganization of polymer chains 

beyond a certain elongation threshold, namely crystallization, which leads to the opposite 

effect. With regard to these phenomena, some questions of importance arise: Are they 

reversible? Are they simultaneous? Is the elongation at which crystallization occurs constant 

or is it dependent on time, polymer chains, polymer network and/or temperature? The first 

observations previously summarized illustrate the complexity of the phenomena that occur 

during the deformation of rubber. This is the reason why a number of experimental techniques 

were used to investigate this deformation. For instance, by means of x-rays, a time lag was 

observed in the double refraction of stretched rubber.
19-21

 This time lag is also necessary to 

obtain the stabilization of the volume at a given elongation
22

. Again, this could explain the 

phenomenon called "optical creep" and observed by photoelasticity by Thibodeau and 

McPherson.
23

 These results motivated the study on the change in volume of stretched rubber 

by Holt and McPherson
11

. 

B. THE WORK OF HOLT AND MCPHERSON (1936) 

 

In this work
11

, the authors conducted two series of experiments with unfilled samples 

vulcanized with sulfur. In the first series, the rubber was stretched at 25°C to a given 

elongation and held at that elongation for 3 minutes, observations on the volume being made 

at frequent intervals. It was then released and observations were again taken at intervals over 

a period of 3 minutes. The same procedure was repeated for various successive elongations. 

The results are illustrated by the diagram in Figure 2. A decrease in volume corresponding to 

0.1% in 3 minutes was observed beyond an elongation equal to 450%. At higher elongations 
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the decrease became progressively greater and amounted to nearly 2% at an elongation of 

725%. 

In a second series of experiments the samples were stretched at 25°C first to a 

relatively low elongation of 200 percent, and were held at this elongation for 3 minutes while 

observations were made. Then, without release, the sample was stretched to successively 

higher elongations, each for 3 minutes, until the maximum elongation had been reached. The 

process was then reversed by the same stepwise procedure. The results are illustrated in 

Figure 3. The changes in volume at different elongations were slightly greater than the 

changes which were observed when the samples were released between successive 

elongations. Moreover, when the sample was released in a stepwise manner the volume 

showed a definite lag, and at any elongation except zero it was less than the volume attained 

on stretching to the same elongation. At zero elongation, the original volume was recovered. 

The authors interpreted these results as the fact that the release phase might correspond to the 

equilibrium state, but they reported that this was not in agreement with the fact that when 

rubber is held for a longer time in the stretched condition, its volume may reach lower values. 

The authors also explained that there is an elongation threshold of about 450% beyond which 

volume variation became apparent. Thus, the results of Holt et al. were the first from which 

the elongation at the beginning of crystallization can be deduced. Indeed, during stretching, 

the decrease in volume became apparent when the elongation at the beginning of 

crystallization was reached. Moreover, the time necessary to stabilize the volume at a given 

elongation was higher during stretching than during the release phase. The authors concluded 

that the change in volume during stretching is influenced by the same considerations as X-ray 

diffraction, since it is observed only above a certain critical elongation and is greater the 

higher the elongation, the lower the temperature, and the longer the time the sample is 

maintained stretched. 
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Finally, this study by Holt and McPherson gave the first observations on the influence 

of repeated cycles on the change in volume: after a first set of elongations was applied and the 

samples were maintained stretched, the same set of elongations was applied again to the 

samples. The authors concluded that the change in volume on stretching was not significantly 

affected by the previous stress history of the samples and this is therefore in contrast to stress-

strain behavior, which is markedly altered by the first few stretching cycles.
3-5

 

 

C. 1940-1980: MOST OF THE MEASUREMENTS ARE USED FOR VOLUME 

CHANGE MODELING 

 

During this period, a number of authors tended to predict the volume change in rubber 

from measurements at low elongations.
12,24-29

 Some of these authors cast doubts on the 

measurements performed by Holt and MacPherson for low elongation values (up to 200% 

elongation). For instance, Gee
12

 considered that the dilatometric method used by Holt and 

McPherson was not sufficiently sensitive to measure volume change in this elongation range, 

and performed the measurement with a new apparatus using hydrostatic weighting; they 

found, contrary to Holt and McPherson, a significant volume variation of about 2 10
-4

 at 

125% elongation. In the larger elongation ranges, the studies that attempted to model the 

volume change at elongations superior to 200% were conducted with filled synthetic rubbers 

such as styrene butadiene rubber
30

 and Viton
31

, i.e. non-crystallizable rubbers for which the 

volume increases in a monotonic manner when stretched. The models proposed in the 

literature are summarized in the next section. 

It should be noted that, in this period, the work of Mullins and Tobin
13

 is the only one 

that investigated volume variation in stretched rubber, unfilled or filled by carbon black, 

vulcanized using sulphur or peroxides, in the large elongation ranges. This work reconciled 

the previous results on volume variation at low elongations with those obtained by Holt and 
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McPherson at large elongations: Mullins and Tobin showed that the volume always increased 

before decreasing. The decrease is the consequence of crystallization, which takes place 

above a certain elongation value. For filled rubber vulcanized with sulphur, the decrease 

began between 100 and 200% elongation. For unfilled rubber vulcanized with sulphur, the 

maximum applied elongation of 400% was not sufficient to highlight a decrease in rubber 

volume. This seems to indicate that fillers act, at the microscopic scale, as concentrators of the 

deformation and allow crystallization to occur at lower macroscopic elongation. For unfilled 

rubber vulcanized using peroxides, the decrease began between 200 and 300% elongation 

(this result was also found by Reichert, Hopfenmüller and Göritz.
32

 Compared to 

vulcanization with sulphur, this observation seems to indicate that vulcanization with 

peroxides leads to a higher deformation localization than vulcanization with sulphur and thus 

acts like fillers do. Finally, Shinomura and Takahashi
33

 measured the volume changes in 

carbon black-filled butyl and styrene butadiene rubbers and proposed to distinguish two parts 

in the response of the materials in terms of relative volume variation. As shown in Figure 4, 

volume variation versus elongation can be modeled by two curves, each of them 

corresponding to one type of cavitation. The authors explained that the first type of cavitation 

originates in the breakdown of carbon black-rubber interactions and the second type comes 

from the breakdown of carbon black aggregates. Thus, they proposed to analyze volume 

variation by introducing a new mechanical quantity defined as the ratio between the volume 

variation and the uniaxial Cauchy stress σ. Figure 5 shows the results obtained. As previously, 

in Figure 4, this relation is modeled by two curves, corresponding to the first and second type 

of cavitation. The first curve exhibited a plateau whose level depends on the filler structure 

and the interaction between fillers and the rubber matrix. 
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Finally, elongation threshold is observed before volume variation. It should be noted 

that in this work the uniaxial Cauchy stress is calculated using the assumption that the 

material is incompressible. 

 

D. THE MOST RECENT STUDIES: TOWARD THE COMPREHENSION OF 

DEFORMATION MECHANISMS 

 

In the recent past, fives studies have been dedicated to volume variation in stretched 

rubbers. They were carried out on synthetic and natural rubbers and tended to link the 

measurements to the mechanisms of volume change and consequently of deformation. The 

first two investigated the nature and the surface treatment of fillers in synthetic rubber. The 

study by Kumar et al.
14

 (2007) dealt with the incorporation of recycled rubber granulates, 

considered as intrinsic flaws, in a virgin styrene butadiene rubber matrix. No volume change 

with strain was observed in this matrix, unfilled or filled with 70 phr carbon black 

aggregates (N330, HAF). Authors measured the volume variation in stretched compounds 

with various granulate size and modulus and investigated the change in flaw size with strain 

and the reduction in strength resulting from a weaker interface using a microstructural finite 

element analysis. Results highlighted that flaw size increases in a characteristic way with 

strain if the rubber matrix and granulates have a similar modulus, whereas a modulus 

mismatch results in much larger volume changes and hence greater flaw size which also 

appears to increase with strain. As a perspective, authors suggested that their approach would 

be well-suitable to evaluate the effectiveness of surface modification techniques in the 

future.
34-36 

This was the aim of the study of Ramier et al.
37

 (2007) that focused on the influence of 

the treatment of silica fillers in styrene butadiene rubber. These fillers were treated with either 

a covering agent or a coupling agent. First, tests performed previously on the rubber matrix 
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had not highlighted any change in volume. Second, without any treatment, silica-filled styrene 

butadiene rubber exhibited the highest volume variation at each applied elongation. Third, for 

both silica filler treatments, volume variation increased monotonically with elongation. Using 

the covering agent, the higher its quantity, the lower the volume variation. Using the coupling 

agent, the curve is the same whatever its quantity. Moreover, as illustrated in Figure 6, the 

concavity of the curves obtained for the two treatments was different. By plotting volume 

variation as a function of stress, the authors concluded that the covering agent is favorable to 

decohesion and void formation phenomena and that the coupling agent delays the occurrence 

of decohesion because of the strong cohesion between treated silica fillers and the rubber 

matrix. 

After these first results on styrene butadiene rubber, some of the previous authors 

attempted to determine parameters governing strain-induced crystallization in filled natural 

rubber.
15

 For this purpose, the authors measured simultaneously the tensile stress, the volume 

variation and the crystallinity of filled and unfilled natural rubbers (Standard Malaysian 

Rubber number 10). Three kinds of carbon black (N324, N347 and N330) and one type of 

silica were used to fill the samples (45 phr in weight for carbon black and 50 for silica). Tests 

were performed over several cycles at a temperature and a strain rate set at 20°C and 0.25 

min
-1

, respectively. Figure 7 illustrates the results obtained with all the samples. During 

stretching, filled natural rubbers exhibited a positive volume variation due to filler-rubber 

decohesion and cavitation in the rubber matrix. The maximum value of the positive volume 

variation (less than 4% for carbon black filler referred to as N234) decreased with each cycle 

until stabilization. Even through the authors located the stabilization of the tensile stress after 

the third cycle, they did not discuss the number of cycles necessary to stabilize the volume 

variation. During unloading, they observed that for a given elongation the volume variation is 

lower and they explained this result by a fast recovery of decohesion /cavitation. They also 
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observed that volume variation became negative before returning to zero. For the authors, this 

is the signature of strain-induced crystallization, which tends to reduce significantly the 

volume of rubber. To highlight the influence of fillers, they measured the volume change for 

the same natural rubber, unfilled. It should be noted that they did not indicate whether the 

curve was that of the stabilized cycle or not. For unfilled natural rubber, the maximum value 

for volume variation reached 2% and no negative value was observed. This could be 

explained by the fact that the elongation at the beginning of crystallization had not been 

attained during stretching. They proposed to illustrate the contribution of both 

cavitation/decohesion and crystallization phenomena to the global change in volume 

measured by the diagram in Figure 8. The authors explained that they were not able to analyze 

more precisely their results in terms of change in volume between the different filled samples 

because the accuracy of the pressure sensor they chose for the apparatus used to measure the 

volume was not high enough. 

At this stage in the present state-of-the-art review, it seems relevant to be able to 

distinguish the contribution of decohesion/cavitation and crystallization phenomena and to 

study quantitatively the competition between the two phenomena through the measurement of 

the change in volume. For this purpose, it is necessary to measure the volume variation more 

accurately. This was the aim of the two last studies who introduced an original volume 

measurement method.
16-17

 This is based on an optical measurement technique, namely digital 

image correlation (D.I.C). In their work, Le Cam and Toussaint investigated the competition 

between cavitation/decohesion and crystallization by detecting elongations at the beginning of 

crystallization and at the melting of crystallites.
16

 Tests were performed on both natural and 

synthetic rubbers, unfilled and filled with carbon black, and at a temperature, hygrometry and 

strain rate set at 23°C, 34% and 1.3 min
-1

, respectively. The results obtained are presented in 

Figures 9 to 13. Figure 9 shows the relative volume variation obtained during the first 
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mechanical cycle for unfilled natural rubber. The authors modeled the curve in four segments 

([OA], [AB], [BC] and [CD]) and described the competition between cavitation and stress-

induced crystallization in relation to each segment: 

(i) segment [OA]: the volume increases due to the occurrence and growth of cavities in the 

rubber matrix; 

(ii) segment [AB]: from  λA = 4.2, the volume begins to decrease. According to the authors, 

even though cavities continue to appear and grow, the crystallization of the polymer chains 

begins and is of a first-order phenomenon compared to cavitation. Consequently, in the 

unfilled natural rubber considered in this study, the volume decreases; 

(iii) segment [BC]: during unloading, the sample volume at a given stretch ratio is smaller 

than during loading. According to the authors, this could be due to either the difference 

between the kinetics of crystallization and of crystallite melting or the anelastic deformation 

of cavities. To investigate the deformation of cavities, the authors measured the volume over 

one cycle for which the maximum stretch ratio is still inferior to λA, i.e. the stretch ratio at 

which crystallization is initiated. In terms of stress, the authors explained that the hysteresis 

loop was not significant because no crystallization occurs in the bulk material. This result 

corresponds to that of Trabelsi, Albouy and Rault
38

. Figure 10 shows that the volume change 

is the same for loading and unloading. The authors concluded that cavitation generated under 

such loading conditions can be considered as an elastic process and that the kinetics of the 

nucleation and growth of cavities and recovery can be considered as being the same on the 

macroscopic scale. These results would indicate that the hysteresis loop obtained for volume 

change curves is only due to chain crystallization. Finally, point C corresponds to the melting 

of the last crystallites; 

(iv) segment [CD]: the volume slightly decreases when the cavities close. 
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The authors then conducted the same measurements with the same natural rubber 

filled with 34 phr of carbon black referred to as N326. Figure 11 presents the result obtained 

in terms of relative volume variation for the first mechanical cycle. As shown in this figure, 

the addition of fillers increased the volume variation. The fact that from λA = 1.64 the volume 

variation does not decrease as in natural rubber indicates that, even though the elongation at 

crystallization is lower than in natural rubber, the addition of fillers tends to amplify the 

cavitation phenomenon and to minimize the level of crystallinity for a given stretch ratio. For 

the authors, this is the reason why the hysteresis loop was smaller in filled than in unfilled 

natural rubber. Moreover, the addition of fillers amplifies the local deformation and 

consequently decreases the elongation at which crystallization begins. 

To conclude their work on volume change in rubbers, Le Cam and Toussaint 

performed cyclic tensile tests on natural and synthetic filled rubbers.
17

 Figures 12 and 13 

show the third cycle in terms of relative volume variation obtained for filled natural rubber 

and styrene butadiene rubber, respectively. For filled natural rubber, the hysteresis loop of the 

relative volume variation curve obtained for the third mechanical cycle was lower than for the 

first cycle. Moreover, the same characteristic stretch ratios as those of the first cycle were 

observed: crystallization started at λ = 1.64 and the last crystallites melted at λ = 1.44. For the 

authors, this seems to indicate that the Mullins effect has no influence on these characteristic 

elongations. For filled styrene butadiene rubber, the first cycle was the only one that exhibited 

a hysteresis loop in the volume change curve. No hysteresis loop was observed for the second 

and third cycles and the evolution of volume variation versus stretch ratio was linear. 

Moreover, no significant residual volume variation was observed. 

These studies close the first part of the present review. 

 

IV. MODELING VOLUME CHANGE IN STRETCHED RUBBERS 
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As highlighted above, the response of stretched rubbers in terms of volume change 

comes from several physical phenomena. Obviously, the prediction of the relative volume 

change of stretched rubber does not account for all of these phenomena and their modeling is 

still a question of importance. This section presents the approaches proposed to model the 

volume change. The first models date from the 1950s and predict the reversible change in 

volume of isotropic rubber submitted to monotonic uniaxial stretching. Later, the prediction 

of change in volume was performed for multiaxial loading conditions. After reporting the 

uniaxial and multiaxial predictions of the change in volume of stretched rubber, a note is 

dedicated to volume changes due to the irreversible process of deformation. It should be noted 

that the influence of temperature on volume change is not discussed here. 

 

A. MODELING THE REVERSIBLE CHANGE IN VOLUME UNDER 

UNIAXIAL LOADING CONDITIONS 

 

The first study that tried to model the change in volume of stretched rubber was that of 

Gee
25

 (1946). The author assumed that the magnitude of the volume change can be estimated, 

at least approximately, from the known dependence of the internal energy E of rubber on 

isotropic changes in volume and used the well-known expression
39

: 

K

T

V

E

T


3












 (1) 

where 
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K 













Vln
 is the isothermal compressibility and β is the coefficient of linear 

expansion of the unstretched rubber. It should be noted that this equation does not take into 

account the change in entropy due to phenomena such as crystallization of polymer chains 

and the fact that β depends on the value of the elongation
40

. Assuming that the isothermal 
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change of E with V is the same whether a hydrostatic pressure or a uniaxial tension is applied, 

the volume variation obtained by stretching the rubber to length l is given by: 

dl
l

E
l

T

K
V

TP

l

l ,0
3  















 (2) 

where l0 is the unstrained length of the rubber at temperature T . This equation applies as long 

as the material remains isotropic. According to Gee
25

, this assumption is valid for elongations 

inferior to 2 in natural rubber but he did not discuss the frontier between isotropy and 

anisotropy in terms of elongation. Moreover, Gee, examining the results of Holt and 

McPherson
11

 in this range of elongation, assumed that the volume does not increase 

significantly with the increase in temperature at constant pressure and deformation. 

Considering his experimental data, the author rewrote Equation 2 as follows: 

dl
l

f
lKV

l

l TP
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










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0
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where f  is the uniaxial tensile force. Finally, Gee discussed the origin of volume and energy 

changes and explained that for the classical theory of small elastic deformations, the applied 

force may be resolved into shear stresses, which change the shape of the material without 

affecting its volume, and a hydrostatic component, which changes the volume but not the 

shape. The hydrostatic component induced by a unidirectional force is a tension p , equal in 

magnitude to one-third of the tensile stress: 

V

fl
p

3

1
  (4) 

and the resulting volume variation ΔV would equate pKV  and consequently  Kfl
3

1
. The 

fact that this result can be obtained with the limiting form of Equation 3 as 0ll   shows that, 

for small deformations, the  observed volume variation is produced by the hydrostatic 

component of the tensile force. According to Gee, this consists of an increase in the average 
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intermolecular spacing, and is accompanied by equivalent increases in both internal energy 

and entropy. 

Later, Hewitt and Anthony
26

 (1959) rewrote Equation 3 in the form: 


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 (5) 

where B is the bulk modulus of the rubber, Π is the uniaxial component of the first Piola-

Kirchhoff tensor, P is the pressure of the surrounding fluid (about 1 atm) and λ is the ratio 

between the deformed and undeformed lengths of the sample. This equation obviously applies 

in the same elongation range as Equation 2, i.e. inferior to 2. 

To predict the relative volume variation using Equation 5, it is necessary to estimate 

Π. Here, we briefly recall the two theories classically applied. The first is the elementary 

statistical theory for idealized networks and is based on the postulate that the elastic free 

energy of a network is equal to the sum of the elastic free energies of the individual chains.
41-

42
 This leads us to neglect the intermolecular contributions to the total elastic free energy.

43-44
 

The expression of the elastic free energy is given by: 

)3( 2

3

2

2

2

1  kTAel
 (6) 

where the λi terms are the macroscopic principal extension ratios, i.e. the ratio between the 

deformed and undeformed macroscopic dimensions of a prismatic test sample if the 

macroscopic state of deformation may be assumed to be homogeneous. k is the Boltzmann 

constant, T is the absolute temperature and   depends on the model considered. It is equal to 

2


 for the affine network model,

45
 where ν is the number of network chains. It is equal to 

2


 

for the phantom network model,
46

 where 


 









2
1  and   is the average functionality, i.e. 

the number of sites from which chains can grow. According to Flory, the elA  expression 

contains an additional logarithmic term that is a gas-like contribution resulting from the 
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distribution of the cross-links over the sample volume. Therefore, the affine model proposed 

by Flory
45 

(1953) is rewritten as follows: 
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
 (7) 

where μ equals 



2 , V is the final volume of the network, and V0 is the volume of network in 

the state of formation. 

The stress derives from the elastic free energy, according to the thermodynamic expression:
47

 

VTi

el
ii

A
V

,

1













 


  (8) 

where i  is the Cauchy stress along the ith coordinate direction, i.e. yx


,  and z


 axes. The 

subscripts T and V indicate that the differentiation is performed at fixed temperature and 

volume. 

The volume ratio is defined by: 

321

0


V

V
 (9) 

By considering that the volume of the network V without any applied force at the beginning of 

the experiment may be different from V0, depending on the amount of solvent present relative 

to that during formation, the final elongation is defined by: 

 

ii
V

V


3

1

0








  (10) 

where αi is the ratio between the final length of the network li and its initial undistorted length 

at volume V with solvent Sil  along the ith coordinate direction. In order words, this is similar 

to the multiplicative decomposition of the deformation tensor gradient when considering the 
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continuum mechanics approach. The deformation comes from a purely dilatational part 

(which is the swollen step here, before any stretching), and an isochoric part. 

Equation 9 leads us to rewrite Equation 8 as: 
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and using Equation 6: 
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In the following, we present the prediction of uniaxial volume change. It is therefore 

necessary to develop the uniaxial stress-strain response. The deformation state along the x


 

axis for stretching and compression is given by: 

3
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 where   corresponds to 1 , i.e. the ratio of the final length along the direction of stretch to 

the initial undistorted length at volume V. Thus, Equation 12 has the form: 
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and using Equation 14 leads to: 

 12
3

2

0

1 2 














 
 

V

V

V

kT
 (16) 



 20 

Finally, the retraction force f acting along the x


 axis is obtained by multiplying both sides of 

the previous equation by the deformed area: 
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 (17) 

where 1iL  is the dimension of the network in the x


 axis at the beginning of the experiment, 

when the volume differs from V0 and depends on the quantity of solvent (see Figure 6.1, page 

42 in reference 42). It should be noted that the retraction force can also be normalized by the 

unstrained area. Thus, the stress-strain response of the material is given for low elongation 

and at constant temperature by the statistical theory: 











2

1


UT  (18) 

where U is related to the chain molecular weight Mc, the density ρ of the rubber, and the gas 

constant R by the relation 
cM

R
U


 .   depends on the particular version of the statistical 

theory employed and on the structure of rubber.
46

 Its value is in the range 
2

1
 to 2. 

Another one-parameter expression for Π was proposed by considering that Π remains 

strictly proportional to strain for strains up to 100
48

 or 200%.
49

 Hence, the stress-strain 

response is given by: 

 E  (19) 

where E is the Young's modulus of the material and ε the uniaxial linearized deformation, 

defined by 
0

0

l

ll 
. 

An additional one-parameter stress-strain relationship was proposed 

by Valanis and Landel
50

 (1967) in the logarithmic form: 
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Finally for this first theory, a two-parameter relationship was proposed by Martin, Roth and 

Stiehler
51

 (1956) which has the form: 
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where A is a parameter which depends on both the degree of crosslinking and the timescale. 

The second theory used to model the stress-strain response of rubber-like material is 

based on hyperelasticity, by considering the medium as a continuum. A number of models of 

various complexity have been proposed; see for example: Mooney
52

 (1940); Treloar
53

 (1943); 

Rivlin
54,55

 (1948); Biderman
56

 (1958); Hart-Smith
57

 (1966); Yeoh
58,59

 (1993, 1997); 

Gent
60

 (1996); Haines and Wilson
61

 (1979); Gent and Thomas
62

 (1958); and Ogden
63

 (1972). 

In the case of Mooney hyperelasticity: 
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where C1 and C2 are the material parameters of Mooney's law. 

Using the expression of relative volume variation given by Equation 3, Fedors and 

Landel
30

 (1970) proposed to compared the results obtained with the previous stress-strain 

expressions. Thus, the calculation of the integral of Equation 3, using Equation 18, leads to 

the expression of relative volume change: 
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This equation can be rewritten as follow
26

: 
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Using Equation 19, Equation 3 becomes: 
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Using Equation 20, Equation 3 becomes: 
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These expressions of relative volume variation result from a one-parameter stress-strain 

relationship. For instance, using Equation 22, the two-parameter expression of relative 

volume variation would be: 
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and using the expression of Martin, Roth and Stiehler
51

 (1956): 
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Once the value of A has been determined, the integral can be evaluated numerically. It should 

be noted that Khasanovich
64

 (1959) pointed out that the material does not remain isotropic at 

large deformations, and hence the integrand in Equation 5 should be multiplied by a factor μ 

which takes into account the anisotropy of linear compressibility for a stretched material. If 

the elastomer obeys the kinetic theory stress-strain law derived by James and Guth
46

 (1947), 

then Khasanovich showed that: 
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and consequently Equation 5 becomes: 
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The comparison carried out by Fedors and Landel
30

 highlighted that at small elongations, i.e. 

less than 2, the predictions of the various proposals correspond well to the experimental data. 

At large elongations, however, the predictions diverge. This is explained by the fact that Gee's 

expression is formulated for small elongations and that for large deformations, other 

phenomena such as crystallization and cavity nucleation and growth occur in the bulk 

material. 

 

B. MODELING THE REVERSIBLE CHANGE IN VOLUME UNDER 

MULTIAXIAL LOADING CONDITIONS 

 

To model the volume changes accompanying the deformation of rubber, the basis of 

isotropic elastic theory is applied. We start with the multiplicative decomposition of the 

deformation gradient ),( tXGradF


  of a material point X


 at time t into a volume-

changing part and a volume-preserving part: 

FFF


  (31) 

),( tXx


  denotes the deformation. The volume-preserving part is written: 

1det,3

1

 FFJF  (32) 

FJ det  and the volume-changing part IJF 3

1




 are used to define the unimodular left and 

right Cauchy-Green tensors, respectively: 

TT FFBFFC  ,  (33) 

1detdet  BC , which can be expressed relative to the original Cauchy-Green tensors 

FFC T  and 
TFFB   via: 
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The three first invariants of each of the previous tensors are defined by: 
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and 
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 (36) 

Based on the multiplicative decomposition defined in Equation 31, we assume a decoupled 

constitutive representation of the free energy function: 

     
CCCC

IIIWJUIIIJW ,,,   (37) 

so that the resulting stress state decomposes into a pure hydrostatic and a pure deviatoric part. 

The volumetric part of the strain energy function U(J) is defined by  JUK


 and corresponds 

to a penalty function.  JU


 denotes the principal function of the determinant J. One of the 

simplest expression commonly used for  JU


 is 
2)1(

2

1
J . In the literature, many other 

expressions of  JU


 have been proposed.
63,65-72

 The form of  JU


 is chosen with respect to 

the convexity requirement for the volumetric part of the strain-energy function that implies 

  JU  for 0J  and J  as well as   0'' JU  so that a volumetric compression or 

stretch yields hydrostatic pressure or tension
72

. 

Next, we present the prediction of relative volume variation expressed relative to the 

principal stretches instead of the invariants of the Cauchy-Green tensors (see Equation 37). 

For this purpose, the modified principal stretches 
i  are introduced in the form

73
: 

3

1


 Jii   (38) 
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This expression is similar to Equation 10 where 
i  corresponds to i , the ratio between the 

final length of the network li and its the initial undistorted length at volume V with solvent Sil  

along the ith coordinate direction. Thus: 

1321   (39) 

Thus in turn, the strain energy density of an isotropic elastic solid can be considered as a 

function of 
1 , 

2 , 
3  and J, symmetrical in 

1 , 
2 , 

3 . The principal Cauchy stresses i  

derive from the strain energy density according to: 
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and using the modified principal stretches, Equation 40 becomes: 
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which can be rewritten as follows: 
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With respect to uniaxial tension and considering that the relative volume change J-1 is of the 

order of 0.01%, Ogden
73

 (1976) introduced the variable 1 J  and the notation 

 

















JWJW ,,,, 2

1

2

1




 and expanded  JW ,


 about J=1 to the 

second power in ε. Thus, one can write: 
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 (43) 

and the relative volume change ε is given by: 
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Let us consider, for example, a certain class of strain energy densities introduced by 

Ogden
63

 (1972): 
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where the n s and n s are the material constants. The function g(J) is such that g(1) = g'(1) = 

0, g''(1) = 1. Moreover, g'(J) > 0 if J > 1 and g'(J) < 0 if J < 1. The prime denotes 

differentiation with respect to J. The principal Cauchy stresses associated with Equation 45 

are: 
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The author showed that Equation 44 can be approximated by: 
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where 
K


  . This expression corresponded to the work of Chadwick

74
 (1974) and 

Flory
47

 (1961), applied only to small stretches.  

For higher stretches, the volume reaches a maximum, then falls to its initial value 

before decreasing steadily until rupture. To account for such a phenomenon, Ogden proposed 

to add a term, which involves a coupling between J and the modified stretches, to the strain-

energy function. Thus, for uniaxial tension, the relative volume change is given by: 
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for equi-biaxial tension: 
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and for pure shear: 
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It should be noted that Sharda and Tschoegl
75

 (1976) used the same approach in which  


 

also depends on n  and n . 

For uniaxial tension, Ogden proposed  


 in the form 
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 where 


 and   

are real constants. This form allowed the author to fit the theory to the experimental data of 

Holt and McPherson
11

 and consequently to account phenomenologically for the influence of 

stress-induced crystallization on relative volume change. 

To conclude on the modeling of the reversible change in volume of stretched rubber, 

numerous expressions of the relative volume have been proposed. All of them predicted 

volume change in the case of small deformations. However, for large deformations, the 

predictions diverge. This is due to the fact that large deformations generate heterogeneity in 

the bulk material, which is composed of numerous cavities which appear and grow. Finally, it 

should be noted that for large deformations in crystallizable rubbers, the approaches of 

Ogden
73

 and Sharda and Tschoegl
75

 account phenomenologically for the volume decrease due 

to the crystallization of the stretched polymer chains. 

 

C. NOTE ON MODELING THE IRREVERSIBLE CHANGE IN VOLUME 

UNDER MULTIAXIAL LOADING CONDITIONS 

 

Special experiments, as proposed by Gent and Lindley
76

 (1958), Gent and Wang
77

 

(1991) and Legorju-Jago and Bathias
78

 (2002), were carried out to highlight the sudden 

initiation and growth of cavities in bulk material. For modeling, the cavitation phenomenon 

under hydrostatic loading conditions was studied considering the stability conditions for the 
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sudden growth of microscopic cavities in the incompressible bulk (see for instance 

Ball
79

 (1982) and Horgan and Abeyaratne
80

 (1986)). This approach was then generalized to 

the other loading conditions by Hou and Abeyaratne
81

 (1992). To take into account the 

dependence of the stress-strain relationship on the growth of pre-existing cavities, the models 

incorporate damage variables into compressible hyperelastic approaches (see the review by 

Boyce and Arruda
82

 (2000)) to quantify the irreversible change in porosity.
83-87

 These models 

can also be extended to cavitation by adapting the rate equation for the damage variable
88

. 

Nevertheless, they are limited to small porosity values, so that the growing cavities do not 

intervene, and the irreversible change in volume seems to be associated with multiaxial 

loading conditions. In fact, under uniaxial loading conditions, the fact that cavities initiate and 

grow does not lead to a permanent set in terms of relative volume change. 

 

V. CONCLUSIONS AND PERSPECTIVES 

 

This paper has reviewed the literature on changes in the volume of rubber by gathering 

observations reported from the end of the 19
th

 until now. Usually, the volume variation is 

determined using dilatometry, but specific gravity, hydrostatic weighing or digital image 

correlation can also be used. The fact that the measurement technique differs from one author 

to another explains why the comparison of the results is difficult. Moreover, the strain rate, 

the time used for measurement, the accuracy, etc, are rarely given. Again, the material 

formulation is only precisely given in the recent studies. One can therefore imagine that there 

are as many results as there are compositions, and in some cases as there are measurement 

techniques. However, it seems reasonable to generalize the results obtained as follows: 

(i) for non-crystallizable rubbers, the higher the elongation, the higher the relative volume 

variation. When the rubbers are filled, the concavity of the curve obtained in terms of 
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relative volume change depends on the interaction between the fillers and the rubber matrix; 

(ii) crystallizable rubbers behave like non-crystallizable rubbers up to the elongation at the 

beginning of the crystallization. Above this elongation, the relative volume variation begins to 

decrease. When fillers are added, they act on the one hand as deformation concentrators and 

allow the crystallization to begin at a lower elongation, and on the other hand as amplifiers of 

the cavitation and cavity growth phenomenon. This explains why no decrease in the relative 

volume change is observed in filled crystallizable rubbers; only a decrease in the curve slope 

is apparent. To conclude, the vulcanization system can also act as fillers do. For instance, 

peroxide vulcanization, which links carbon atoms of macromolecules, concentrates the 

deformation more, i.e. allows crystallization to begin at a lower elongation, than sulfur 

vulcanization; 

(iii) for both crystallizable and non-crystallizable filled rubbers under uniaxial cyclic loading, 

volume variation is a reversible process during the first cycles. No residual change in volume 

is observed after the first cycles. The maximum value of the relative volume change is 

obtained during the first cycle. Contrary to stress, volume variation is stabilized after the first 

cycle; 

(iv) in crystallizable filled rubbers and contrary to non-crystallizable filled rubbers, a 

hysteresis loop is also observed in the volume variation curve for the second and the third 

cycles. This loop results from the difference between crystallization and crystallite melting 

kinetics. 

Concerning the modeling of the change in volume, all of the approaches proposed 

predict volume change in the case of small deformations. For large deformations, however, 

the predictions diverge. This is mainly due to the fact that these approaches do not account for 

the change in the rubber microstructure. 
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As a perspective, volume variation in rubber stretched under multiaxial loading 

conditions is a question of importance, and more particularly the fact that such loading 

conditions could generate an irreversible volume change. Until now, the effect of loading 

multiaxiality on volume variation has only been studied under the particular loading case of 

hydrostatic tension. 
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FIG. 1. - Change in volume of stretched rubbers at different elongations and with different 

quantities of pigment (see Figures 1 to 7 in reference 9). 
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Fig. 2. - Change in volume of rubber on stretching to different elongations at 25°C (see Figure 

6 in reference 11). 
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Fig. 3. - Change in volume of rubber when stretched and when released in a stepwise manner 

at 25°C (see Figure 7 in reference 11). 
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FIG. 4. - Modeling of the volume variation in carbon black-filled butyl and styrene butadiene 

rubber (see Figure 6 in reference 33). 
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FIG. 5. - A new mechanical quantity to analyze volume variation (see Figure 6 in reference 

33). 
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FIG. 6. - Difference in the concavity of volume variation curves obtained for covering and 

coupling agents (see Figures 5(a) and 5(a) in reference 37). 
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FIG. 7. - Relative volume variation in filled and unfilled natural rubber versus elongation  

(see Figure 1(b) in reference 15). 
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FIG. 8. - Schematic illustration of the competition between decohesion/cavitation and 

crystallization in terms of relative volume variation (see Figure 2 in reference 15). 
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FIG. 9. - Relative volume variation over the first mechanical cycle in natural rubber (NR). 
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FIG. 10. - Relative volume variation over the first mechanical cycle in NR. The maximum 

elongation value is lower than that at the beginning of crystallization. 
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FIG. 11. - Relative volume variation over the first mechanical cycle in F-NR. 
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FIG. 12. - Relative volume variation over the third mechanical cycle in F-NR. 
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FIG. 13. - Relative volume variation over the third mechanical cycle in F-SBR. 

 

 


